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Deformation produces inhomogeneous distribution 
of dislocations; therefore, an inhomogeneous mean 
free path and an inhomogeneous K. This can cause 
Hn/Hc2 ratios greater than the ideal value 1.69. How­
ever, in an alloy, the mean free path is controlled 
primarily by solute concentration and variations in 
dislocation density cause much smaller variations in K 
than in pure material. Therefore, in the Nb-0 solution 
one would expect the ratio Hn/Hcz to be smaller than 
that observed in Nb.11 

In an experiment on varying the degree of segregation 
at dislocations by (a) quenching, (b) cold working, and 
(c) strain aging (heating 3 h, 170°C), marked changes 

J. D. Livingston (private communication). 

I. INTRODUCTION 

TH E exact solution of the problem of the diffraction 
of electromagnetic waves by an obstacle of given 

shape and electromagnetic properties can be found only 
in a few cases.1,2 For example, the diffraction of waves 
by a conducting or dielectric sphere, by dielectric 
coated spheres and by a perfectly conducting disk are 
the few three-dimensional problems that have been 
solved rigorously. The need for approximate methods to 
treat the more general cases of diffraction from arbitrar­
ily sphaped obstacles is quite apparent. The variational 
principles3'4 provide a very powerful tool in obtaining 

* This work was supported by the Air Force Cambridge 
Research Laboratories. 

1 R. King and T. T. Wu, The Scattering and Diffraction of Waves 
(Harvard University Press, Cambridge, Massachusetts, 1959). 

2 C. J. Bouwkamp, Rept. Progr. Phys. 17, 35 (1954). 
3 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 

(McGraw-Hill Book Company, Inc., New York, 1953). 
4 H. Levine and J. Schwinger, Theory of Electromagnetic Waves 

(Interscience Publications, Inc., New York, 1951). 

have been observed in the resistivity in the mixed 
state between Hci and Hc2 (see Figs. 16 and 17, Ref. 9) 
for Nbo.993Oo.007. After quenching, Ha/Hc2= 1.71. Cold 
working the quenched sample increased Hn to approxi­
mately I.83 HC2, while strain aging may increase Hn 

slightly ( # ^ 1 . 8 8 # c 2 ) . 
Analysis of Ic data above Hc2 in terms of Js may help 

to elucidate some of the higher values reported for Hcz 
in type I I superconductors (e.g., see Ref. 7). 
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an approximate expression for the scattering cross 
section; but it is not possible to derive from the varia­
tional principles a description of the electromagnetic 
fields. Furthermore, the success of the variational 
approach depends to a great extent on the trial function. 
At low frequencies, the Rayleigh method is very use­
ful.5,6 However, the solutions of Laplace's equation are 
still required. At very high frequencies, the treatment 
of diffraction problems by geometric and physical 
optics techniques developed by Fock7 and Keller8 is 
very successful. An approximate or perturbation method 
in the medium frequency range still remains to be found. 

5 Lord Rayleigh, Phil. Mag. 44, 28 (1897). 
6 A. F. Stevenson, J. Appl. Phys. 24, 1134 (1953). 
* V. A. Fock, J. Phys. (USSR) 10, 130 (1946); 10, 399 (1946); 

see also Thirteen Papers by V. A . Fock, edited by N. A. Logan 
(Antenna Laboratory, Air Force Cambridge Research Center, 
Bedford, Massachusetts, 1957). 

8 J. B. Keller, J. Opt. Soc. Am. 52, 102 (1962). 
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A perturbation method is developed to consider the problem of the diffraction of electromagnetic waves 
by an arbitrarily shaped dielectric obstacle whose boundary may be expressed in the general form, in spheri­
cal coordinates, rp = ro[_l-\-8fi(d,<f>)-{-82f2(0,<f>)~\ ] where ro is the radius of an unperturbed sphere and 
fn(Q,<t>) are arbitrary, single-valued and analytic functions. 8 is chosen such that 

00 

Z \?>nfn(e,<t>)\ < 1 , O<0<7T, O < 0 < 2 T T . 
71=1 

Detailed analysis is carried out to the first order in 5. Procedures to obtain higher order terms are also indi­
cated. The perturbation solutions are valid for the near zone region of the obstacle as well as for the far zone 
region and they are applicable for all frequencies. Possible applications of this perturbation technique to 
elementary-particle scattering problems and other electromagnetic scattering problems are noted. 
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In this paper, the boundary perturbation technique9 

will be extended to consider the problem of diffraction 
of waves by a dielectric object with perturbed boundary. 
This perturbation method is based on a Taylor expan­
sion of the boundary conditions at the perturbed 
boundary.10 Since this approach attacks the complete 
boundary-value problem, the perturbation solution for 
the field components is valid for the near zone (i.e., near 
the obstacle) as well as for the far zone and is valid for 
all frequencies. Similar procedure has been used recently 
by Erma11 in his treatment of the electrostatic problem 
for irregularly shaped conductors. 

II. THE PERTURBATION SOLUTION 

I t is assumed that an arbitrarily shaped dielectric 
body which has a permittivity €1 and a permeability 
An, is embedded in a homogeneous dielectric medium 
(eo,Mo). The boundary of the dielectric body (Fig. 1) 
takes the shape of a perturbed sphere which may be 
expressed by the following equation 

rJ, = f o ( l + « / l ( ^ ) + « 8 / « ( ^ 0 ) + - •••), (la) 

where r0 is the radius of the unperturbed sphere, 8 is a 
smallness parameter, and the fn(0,<l>) are arbitrary, 
single valued, continuous functions satisfying the 
conditions 

Me,o)=MW'> EI*n/»(W)l<i> 

O<0<7T, 0<<£<27T. 

The spherical coordinates (r,6,<l>) are used. 
Let the given exciting field (which need not neces­

sarily be a plane wave) be denoted by E ( i ) , H ( i ) , the 
scattered field by E ( s ) , H ( s ) , and the field inside the 
dielectric body by E ( 0 , H ( 0 . The zeroth-order solution 
will be designated by a subscript 0, the first-order 
solution by subscript 1, etc. Hence, the resultant 
scattered fields and the resultant transmitted fields 
inside the body are respectively, 

E O = E0
(* )+5E1<S>+52E2^+ • 

H ^ = H 0
( S ) + 5 H 1 ^ + 5 2 H 2

( 8 ) + -
(2) 

*o »Mo 

FIG. 1. The arbitrarily 
shaped dielectric body. 

and 
E<«>=Eo<«>+SEi<«>+«2Ea<«>+--

(3) 

The higher order solutions are generated from the 
known zeroth-order solution; i.e., E ( i ) , H ( '°, E0

(s), 
H0

( s ) , E0
(O, and H0

U ) are assumed known quantities. 
For the sake of clarity and simplicity, only the first-
order solution will be carried out in detail. The higher 
order solution can be obtained in a similar fashion. 

The boundary conditions require the continuity of 
tangential electric and magnetic fields at the boundary 
surface r=rp: 

n x[E«>(r„0 ,*)+ E(s)(rP,0,4>)l=n * E«>(rp,6,4>), (4) 

(lb) n x £H«) (rpM)+W>(rP,0,<t>)>n *H<« (rp,0,*), (5) 

where n is a unit vector outward normal to the boundary 
surface and can be written as 

nc^er—8—e<r 
66 

1 d/ i 

sin0 d<j) 
- e 0 , (6) 

to the first order in 8 in spherical coordinates. er, e$, 
and e0 are respectively the unit vectors in r, 0, and </> 
directions. f\ has been defined in Eq. (1). Carrying 
out the vector operations and expressing Eqs. (4) and 
(5) to the first order in 8 in component form with the 
help of Eqs. (2) and (3), one obtains 

1 d/i 
e r : 8{df1/dd)lE^ {rPM)+E**{* ( ' »* ,* ) ]+* [ ^ ( 0 ( ' P A * ) + - E M W (rp,0,*)] 

sin0 dcf) 
dfi 1 d/i 

86 s in0 d<t> 

f !• V i 1 
e*: E^ (rPje,<t>)+Eo^s) ( r „ ^ ) + « £ i / s ) (rPM) [^r ( i ) ( f „ ^ ) + £ r < - > (rPM)l 

[ sin0 d<j> J 

(7) 

f 1 dh 1 
'-Eo^(rPA<t>)+8\E1^(rp,e,<t>)-~ Er<»(r,,0,*) . 

I sin0 86 J 

(8) 

9 P. M. Morse and H. Feshbach, J. Opt. Soc. Am. 52, 1052 (1962). 
10 See, for example, P. C. Clemmow and V. H. Weston, Proc. Roy. Soc. (London) A264, 246 (1961); C. J. Marcinkowki and 

L. B. Felsen, J. Res. Natl. Bur. Std. 66D, 699 (1962); 66D, 707 (1962). 
11 V. A. Erma, J. Math. Phys. 4, 1517 (1963). 



D I F F R A C T I O N OF E L E C T R O M A G N E T I C WAVES A1195 

e,: £.<»(r^^)+£M<'>(r„^)+«{JSi,<«>(r lb^)+(d/J/atf)[£ r<«(r1,>^)+£or ( ' )(' '„»,*)]} 

= EM<Hrp,e,4,)+b{Ei,iHrp,0,4>)+(dfi/d6)EoriiKr,,e,4>)} • (9) 

1 d/i 
e r: S(dfi/de)ZH^-> (rPM)+HH^ (f „tf,*)]+8 [£T,<« (r„fl>*)+ffo.<') (r»0,*)] 

sine 30 

= 5—HH^{fP,e,4>)+^ HM
w(r*A<t>) • (10) 

ae sine a# 

e,: ^ ( f p . M + i V ' O p . M H S 
1 d/i 

H^(rP,e,<i>)—. LHr<
i>(fp,e,ii>)+HorM(rv,e,4>)l 

sine d(j> 

= ffo/»(r„0,*) + S U I + ^ O P A * ) H o r ( ' ) ( f p > ^ ) . (11) 
I sin0 d<£ J 

e*: # / « (rp,d,4>)+HoeM (r „^ )+8{H«<" (f „»,*)+ (a/ i /d^ff , <« (rp,d,<t>)+HorM(rPA<t>)l} 

= ffM<« (rPM)+S{Buw (rp,8,<t>)+ (dfi/de)H0r
W(r,,«,*)> • (12) 

Equations (7) and (10) are satisfied by the zeroth-order solution. We now expand the above functions in Eqs. (8), 
(9), (11), and (12) to order 5 in Taylor series about the unperturbed boundary r=r0 , obtaining 

E^{n,e,<i>)+E<>*uKn,e,<t>)-EHw{u,e,<t>) 

f 1 a/i 
= 6 [£, («(ro,^)+£or ( ' )(fo,^)]-£ l4

W(»'o,M-'-o/1C^<<) ' ( ' 'o,^)+£o#< , ) ' (fo,«>*)]j 
[sine d<j> 

I 1 3 / , 1 
- « E^inf^-E^'KyM-nfiE^yinM) , (13) 

l sin0 a<£ J 
£» ( i>(f. JW)+£M

("(f»,«)-£.i ( 1 )(f . ,W) 

= -5{£1 / s)(ro,M+(a/i/3e)CE/ iH^^)+£or ( sK^o )e^)]+fo/i[£/ i )Xr„,0^)+£o/ s ) ' (»-o,e^)]} 

+8{£1„(«(fo,^)+(5/1/ae)£o/( ,(»-o,M+fo/1£o«( ,) '(»-o)^)}, (14) 

ff ,«> (roAtfO+Ho/8' (n,d,<f>)-HH
{t) (M,*) 

( 1 a/i 1 

I sin6 a<£ 

— ' / i 

l sine 50 

I i a/i i 
8 | —~Hor^irM-H^iroAti-rvfiHo^'Mt) , (15) 

#«<*> (ro,fi,0)+HM
(,> (fo,«,*) -Ho» ( , ) (fo,0,*) 

+5{51/')(ro,e^)+(a/1/ae)Hor
(<)(^,e^)+fo/iHo/(>'(ro,e^)}, (16) 

where the prime signified the derivative of the function with respect to r0. The left-hand sides of the above equations 
are equal to zero by virtue of the zeroth-order solution. Hence, the right-hand sides of the above equations must 
vanish identically. Rearranging and combining Eqs. (13) and (14) gives 

[£i9«> (nfi^-Eu^ ( r o ^ D e d - D V 0 {n,6,<j>) -.£*<« (r0,e,4>)>* = «i (f o,^)e,+«,(f o,e^)e#, (17) 

and combining Eqs. (15) and (16) gives 

lHuw (r»,6,<t>)-Hu
(l) (fo,e^)]ee+[^i/ s > (ro,e,<fr) ~ #w ( " (r0,e,^)]e^= »i(fo,^)e«+^(f o,e,4>)e*, (18) 
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where 

UifaM) = (dfi/de)ZEQr™ (ro,0,*) - ^ r w (ro,e,4>) - £ o / s ) (fo,*,*)] 

i a/i 
«s(M,*) = pSr(0 (ro,6>,0)+EOr(s) (r o, W) - JSor(0 (ro,0,*)] 

sin# d<£ 

+ro/ i [£o/ l ) ' ( ro ,^)-£/* r ( ro , t f ,*)-£o*w ' ( fo ,W)] , (19) 

t>i(fo,0,*) = (d/i/a^)CHor(l) (roAti-Hr^ (roAti-BorM (ro>0,*)] 

+ro/ i [ffo» c o ' ( ro ,^)-^ ( i ) ' ( fo ,^)-Ho«wX^o,W)], 

1 d/i 
^ f r o , * , * ) = ~ [ # r ( i ) (roA<t>) + H0r

(s) if 0 , ^ ) - f f o r ( « ( fO,* ,* ) ] 

sin0 d<£ 

It is noted that the resultant fields given by Eqs. (2) and (3) must satisfy the wave equation. It is therefore clear 
that each term in Eqs. (2) and (3) must separately satisfy the wave equation. Consequently, the general expressions 
for Ei(s), Hi(s), Ei (0, and Hi(<), that are appropriate to the present problem, are12 

*^\ Z-r ^^ e,omn^xe,omn I -*->e,omn*-i e,omn j x^^J 
m,n 

m,n 

kl 
H r o = y " ( r N (04./) M W) f?V\ 

where 

with 

Mef0mn(s) = A» ( 1 ) (&oOme,omn , 

i i a 
NM»fl(8) = —An

(1)(*o0^.omnH [r/zn
(1) ( V ) ] (er x me,omn), 

kQr kor dr 

1 1 d 

£ir &if dr 

fnPn
m(cosO) sin dPn

m(cosd) cos 
me,o«n=:T: ; w<̂ ê  t mc^e^, 

sin0 cos dd sin 

cos 
h,omn= n(fl+ l)Pn

m(cOS6) W<£er . 
sin 

(24) 

(25) 

hn
a)(kor) a n d jnihr) are, respectively, spherical Hankel and spherical Bessel functions; P„m(cos0) are associated 

Legendre polynomials. &o2=coVo«o and £i2=«Vi«i- Ae, are yet unknown arbitrary 
constants that can be determined from Eqs. (17) and (18) using the orthogonality properties of the angular 

! J . A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, Inc., New York, 1941). 
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functions. Substituting Eqs. (20) through (23) into Eqs. (17) and (18), and making use of the following orthogonal­
ity relations 

JO J 0 
0Uomn*le,om'n') s in0d0<ty="{ 

2«+l {m—m)\ 

0, for ffiy^m1, n^n' 

2n2(n+l)2 (n+m)l 
(l+SomV for m=mf ,n=nf, 

/ / (me,omw«me,om 'n0 smdddd<l)= I I [ ( e r xme,own)« (er xme,0OT/n>)] sindddd<l> 
Jo Jo Jo Jo (26) 

0, for m^m!', wj^w' 

2n(n+l) (n-\-m)l 
(l+5om)7r, for m = mf

} n=nf, 

one obtains 

[ 2n-\-\ {n—m)\ 

1, m = 0 

0, m > 0 , 

1 rT r27r 

Ae,omnhn
(1)(koro) — Ce,omnjn(kiro) = / / u-m e ,o m n §mdddd<t>, (27) 

1 ^ 1 ^ 1 . 7 T - 2 7 T 

5 M mn [r0^ (1 )(feyo)]-i)e,om« [/o./n(*iro)] = J / u» (er x me,omn) sinddddcj), (28) 
foro dro kifodro pmnJo Jo 

I d I d 1 /•*• r2*" 
-Cro*n(1)(Vo)]—Ce.omn- [>o./n(£iro)] = / / v- (er xm e ,o m n) sindddd<l), (29) 

ran J 0 J 0 icojuofo dro 

-tj e,om' 
k0 ki 1 r r2r 

Be.omrT ^ n ( 1 ) ( ^ o ) ~ D e , o m n ~ jn(k1r0) = / / V me,omn Smdddlfy , ( 3 0 ) 
PmnJo Jo 

with with a known one. However, as a partial check, the 
u = « i ( f o , ^ ) e « + « 2 ( r o , ^ ) e 0 , (31) p r o blem of the diffraction of a plane wave by a dielectric 

v=V l(roA&ee+vziroM)**> (32) s P h e r e o f r a d i u s r o( l+$) w a s c a r r i e d o u t i n detail using 
the above derived formulas. Results are found to be in 

2n+l (n—m)\ 1 complete agreement with the solutions obtained by 
Pmn==~Z~, 717 ~, ; Ti" fA i * T~ * ^ ' expanding the exact solutions to the first order in 5. 

2n(n+l) (n+m)\ (l+50m)7r 

«i, «2, t>i, and fl2 are given by Eq. (19). The coefficients m . AN EXAMPLE: THE SCATTERING OF PLANE 
Aeomn, Be,omn, Ce,omn, and De,omn can be found readily WAVES BY A DIELECTRIC SPHEROID 
from the above equations. Subs t i t a t i ^ i h ^ <^effici«ats A g ft ^ ^ . ^ ^ rf l k a t i o n o f t h e 

back to Lqs. ^ u ; through ^ gives me nrst-oraer t h e o r y d e r i v e d 

in Sec. II , the problem of the scattering 
correction to the electromagnetic fields due to the o f £ w a y e s & ^ ^ i d ^ J 
departure of the boundary surface from a perfect eccentricity will be considered. I t is assumed that the 
sphere with radius ^ H i g h e r order corrections can be ^ ^ ^ ^ ^ ^ ^ ^ ^ 
found successively in the same manner. I t is interesting ^ ^ d i r £ c t i o n ^ t i i n t h e d i r e c

F
t i o n f ^ 

to note from the above ana ysis that, m general, the ^ g ax i s_ T h e e £ u a t i o n
5

o f ft h e r o i d a l s u r f a c e i s 

perturbed wave will have all components of electro- ^ e n bv 
magnetic fields even if the incident wave is a pure TE y . 
wave (JEr«> = 0) or a pure TM wave (ffr«> = 0). ^ = r 0 [ ( l - 2 5 s u i ^ ] , (34) 

Since the exact solution to the problem of the where 
diffraction of electromagnetic waves by a three-dimen- g = [1— (r0 / (r0+Ar0))2] (35) 
sional dielectric obstacle other than a sphere is not 
available, it is therefore not possible to compare the (5<0 : prolate spheroid; 5 > 0 : oblate spheroid), and 
result obtained by the above perturbation approach 2r0 and 2 (r0+Af0) are the lengths of the two axes of the 
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PROLATE 8 < 0 
SPHERE 8 = 0 
OBLATE S > 0 —. 

FIG. 2. The dielectric spheroid. The arrow indicates the 
direction of the incident wave. 

spheroid. (See Fig. 2.) For small eccentricity, one has 

f ^ r 0 [ l + S s i n 2 6 f ] . (36) 

Comparing Eqs. (36) and (la) gives 

/i(0,*) = sin20. (37) 

The unperturbed solution to the problem of the scatter­
ing of plane waves by a dielectric sphere is well known12: 

oo 2n-\-l 
E ( < )= E (-i)n ( M o m W + i r W " ) , (38a) 

»=i n(n+l) 

oo ko 2n-\-l 
H<«)=E ( - 0 - (N.iM")+*M r f B<»), (38b) 

oo 2n-\-\ 
Eo ( s )= Z (~i)n (fln'Mo lnw+i6w-Nainw), (39a) 

n=i n(n-\-\) 

oo ko 2n-\-l 
H o w = E — H ) " (««*Nel,w 

n=l iwjLtO w ( f f c + l ) 

+ »n'Main<')) , (39b) 

oo 2n+l 
E0<'>= E ( -*) w (an 'M0 ln

( f )+»n'Nei»^>), (40a) 

oo ko / 2n-\-l 
H„(«=2 ; - - ( -*>-

n« l i*CO/Xo W ( W + 1 ) 

X (an
tNom(t)+ibntMeln^), (40b) 

with 

C = -

&n* = 

Hojn(.ktiro)Lkirojn(kiro)'y-' Vijn{kiro)[korojn(koro)~]f 

Vijn(kiro)[korohn(1) (koro)J—ij,ohna) (ftor0)[Aif oin(*if o) J 

( ^ 0 / ^ l ) 2 M l i r i ( ^ O ^ o ) C ^ l ^ o i n ( ^ l ^ o ) ] / - M o i r i ( ^ l ^ o ) [ ^ O r o i n ( ^ O ^ o ) ] / 

M o i n ( ^ o ) [ ^ O ^ n ( 1 ^ ^ O ^ o ) ] / — M l ( ^ o A l ) 2 ^ n ( 1 ) ( ^ O ^ o ) [ ^ l ^ o i r i ( ^ l ^ o ) ] / 

(~i)Mi/*oro 

(kiroj^hrohn^ (kor0)J 

(—i)fxikir0 

Ml(^O^o) 2 ^n ( 1 K^O^o)C^l^o7n(^l^o)] / — M o ( ^ l ^ o ) V ^ ( ^ l f o ) [ ^ O ^ r l
( 1 ) ( ^ 0 ? ' o ) ] / 

(41a) 

(41b) 

(42a) 

(42b) 

Me,omn
(1) and Ne,0mn(1) are obtained, respectively, by replacing hn

a)(ktfr) by jn(k0r) in Me>0mn(s) and N e , o w n
( s ) . 

The prime in the above expressions denotes differentiation with respect to k<f$ or k\fo as appropriate. 
To find the first-order perturbation solution, we first substitute Eqs. (38) through (40) into Eq. (19) obtaining 

«i(ro,0,*)= E (~^)P-
2 ^ + 1 

•^P—(l e ip-e r )+<3p/ i (moip , e^+^/ i ( ( e r xJnei2>)-e0) ] • 
2 ^ + 1 

M2(ro,^*)= E (~*)p K p / i ( m o i p - e 0 ) + ^ / i ( ( e r x m e i P ) - e ^ ) ] , 
p-i p(p+l) 

2p+l k0 r dfx -] 
Vi(ro,d,4i)= E ( - * ) p SP—Goip'er) + rp/i((e rxm0ip)^etf)+i7p/i(iiiaip-ea) , 

p-i />(/>+!) icou0L 50 J 

oo 2 ^ + 1 ko 
v2(ro,d,<t>)= E {~i)p— "—LTpfi((erxmolp)-e(f>)+Upf1(m€lp-e<i>)'], 

z>=i p(p+l) iccfxo 

(43) 

(44) 

(45) 

(46) 
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where 

Pp= ( ^ o ^ o ) [ V ( ^ o A ) i p ( ^ i ^ o ) - i p ( ^ o r o ) - ^ ^ ( 1 ) ( ^ o r 0 ) ] , (47) 

Qp=ap
tkirojp(kiro) — korojp

,(koro) — ap
sk0rohp

ay(koro), (48) 

Rp=ik1robp
tt(l/kiro)(k1rojp(k1ro)yj^-^or0C(lAo^o)(^oroip(^o^o))/]/-^o^o^ps[(lAoro)(^o^(^p(1)(^oro))/]/, (49) 

Sp= (kyio/koni) (l/*iro)«p'ii,(*i^o) - (Wo)./p(*oro) — ( W o ) V V ^ (AoTo), (50) 

rp=(^iMo/^oMi)^p^i^o[(lAi^o)(^i^oiP(^i/'o))/]/-^o^oC(lAo^o)(^o^oyp(^o^o))/]/ 

~V^oroC(lAoro)(^o^p ( 1 )(^or0)) ,] / , (51) 

Up^iikifio/kofji^bp^irojn (kiro) — ik<fojn(k<fo) — ibn
skorQhn

iiy(korQ). (52) 

The expansion coefficients for the first-order perturbation fields are then found by putting expressions (43) through 
(46) into Eqs. (27) through (30) and carrying out the integration where possible. One has 

A emn— J5omn~ ^ emn~ ^omn^ U IOT a l l fft and . tl, 

A0mn—Bemn~Comn^Demn=^§ f o r M7^ I SLlid all ft , 

Aoln = [ ^ o l n i n ( ^ l ^ o ) — a o l n ( ^ l M o A o A t l ) ( l A l f o ) ( ^ l / ' o i r i ( ^ o ) ) / ] / r , 

Bein = C ~ 7 e l n ( l A l ^ o ) ( ^ l ^ o i n ( ^ l ^ o ) ) / + j 5 e l n ( ^ l M o A o M l ) i n ( ^ i r o ) ] ( ^ O M l A l M o ) / r , 

Coin = [X*ln*n ( 1 ) (AQTO) - G o l n C W o ) ( £ o ^ n ( 1 ) ( ^O^o) ) ' ] / 1 " > 

£>eln = = C - ^ e l n ^ n ( 1 ) ( ^ 0 ^ o ) + 7 e l W ( l / ^ O ^ o ) ( ^ 0 ^ 0 ^ n ( 1 ) ( ^ 0 f o ) y ] ( ^ O M l A l M o ) / r ? 

with 

r = (l/koro)(kor1hnaKhro)yjn(kiro)—(k1iJLo/kofii)(l/kiro^ , 

7r 00 2p-\rl 
a0in = E (-^)p [Pp/n^+Q^i^+iVsi^] ,-

7T 00 2p-\~l 

Peln = E ( ~ i ) P [ i >
3 J 4 1 n P + C p / 8 1 « P + ^ p / 2 1 n P ] , 

7r 00 2p~\rl 

leln^ E ( ~ * ) P lSpJnnP+TpJnnV+UpJ2ln
P'], 

plnp-l p{p+l) 

IT 00 2 ^ + 1 

X o l n = E ( - * ' ) * [ ^ V 4 1 n P + r p / 2 1 ^ + t / p / 3 1 n P ] 5 

^ l n p - l # ( # + 1 ) 

where / n » p , /2inp, /3inp, and 74inp, which are definite integrals involving the associated Legendre functions, are 
given in the Appendix. Hence, the scattered fields correct to the first order in 8 are 

oo r 2n+l -i r 2n+l n 
E O = E (-*)» an»+6Aoln Moln<-> + i{-iY bn

s+5Beln N e l w ^ , (55) 
n=iL n(n+l) J L n(n+l) J 

(54) 

oo k0 (T 2n+l 1 r 2 n + l -l } 
H W = I ( - * ) " 0»M-S4oin N o i » w + i ( - i ) n &n s+$£e ln M«lB<«> . (56) 

«=iicojitolL w ( « + l ) J L n(n+l) J J 

Of particular interest is the far zone behavior of the scattered field. The radial component of the scattered field 
may be neglected at large r because of its rapid fall off compared to the 6 or </> component. Consequently, the 
scattered field has the form of a spherically outgoing wave, i.e., 

e i k o r oo f'r i V (cos0) d 
EC) E ( - * ) w + 1 Vn iWn—Pn'icOSd) 

sin0 dd 
cos^e^ 

d Pn^COSOy 
Vn—Pn1 (COS0) - iWn 

dd sin0 J 
sin^e^ [ , (57) 
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where 

Vn= ( - f ) n C ( 2 » + l ) / » ( » + l ) > n ' + M o l » , (58) 

Wn=i(-i)nl(2n+l)/n(n+l)]bn'+dBeln. (59) 

Rewriting Eq. (57) gives 

E W - f t W e j + ^ w ^ , (60) 
with 

E9M = (eik<>r/ktf) cos0Si(0), (61) 

£ / • > - - (eik^/hr) sm<f>S2(6), (62) 

where Si(0) and S2(0) are called the complex amplitudes 
of the scattered radiation for the two polarizations. The 
squares of the absolute values of Si(6) and S2(0) are 
called the intensities of the scattered radiation for the 
two polarizations; i.e., 

I$=\S1(6)\2
9 and I<f>=\S2(0)\\ (63) 

The backscattering cross section or the radar cross 
section is also of interest. I t is defined by 

<r = Km4ir f 2 |£ a |V |E* | 2 | M
0 , (64) 

k0 r0 

FIG. 3. The normalized backscattering cross sections 
for nose-on incidence. 

or from Eq. (57), 

4?r 
a —— 

&o2 

Simplifying gives 

Z(-*)»+1 (vn-iwn)\ . 
n=l 2 I 

(65) 

47TI 2 w + l I2 

E ( - l ) » ( _ f ) ( a n . + j B . ) 
n=l 2 I 

X 

Z(-D"-
\ n = l 

(£x-* 

(£<-
\ w = l 

2»+l 

1) 

2 

w(w+l) 

-(~i)(an
s+bn

s) 

2 

2n+l 

\A0in l-U eln) 

/ 00 « ( » + l ) \ 

\ »= i 2 / 
(66) 

where the asterisk indicates the complex conjugate of 
the function. The first term on the right-hand side of 
the above equation represents the backscattering cross 
section of an unperturbed sphere, while the other term 
corresponds to the first-order correction due to small 
eccentricity. 

To qualitatively illustrate how the solutions behave, 
numerical computations are carried out using the 
high-speed IBM-7094 computer. I t is assumed that 
(ei/eo)ll2=1.33 and MI/MO=1.0. The Bessel functions 
and associated Legendre functions are computed from 
available subroutines. The integrals in the Appendix 

are evaluated numerically by Simpson's rule. Five 
cases of the spheroidal shape are considered: 

(fo+Af0)Ao= 0.9, 0.95, 1.0, 1.05, 1.1. 

The normalized backscattering cross sections {a/irr<?) 
as a function of k0r0 for 0<£0ro<3.5 for these five cases 
have been computed. Results are given in Fig. 3. 
Figure 4 shows the variation of the polarization of the 
scattered wave as a function of the polar angle 6 with 
k(fQ=2 for various spheroidal shapes. The polarization 
is often defined as 

P = ( / | | - / I ) / ( J „ + / I ) . 

For the present case under consideration, I\\=Ie and 
Ii=I*. I t can be observed from these figures that, in 
general, polarization shows a greater sensitivity to the 
deformation of the spherical obstacle than does the 
normalized backscattering cross section. 

I t should be noted that although the numerical results 
given here are computed from the first-order solutions 
it is still expected that the results would be good 
approximation to the exact solutions for | ArQ/r0\ <0.05. 

IV. CONCLUSIONS 

The problem of the diffraction of electromagnetic 
waves by a dielectric body with perturbed boundary has 
been considered using the boundary perturbation 
technique. The solution is valid for the near zone (i.e., 
near the dielectric body) as well as for the far zone and 
is good for all frequencies. Since the perturbation 
solution satisfies Maxwell's equations, the boundary 
conditions, and the radiation condition for the scattered 
wave at infinity, hence it is unique. I t should be noted 
that with slight modifications of Eqs. (20) through (23) 
the above derived results are also applicable for a 
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FIG. 4. The polarization 
of light scattered from °*2 

dielectric spheroid for nose-
on incidence. 

-0 .2 
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180° 

radially inhomogeneous dielectric body with perturbed 
boundary.13 

Further applications of this perturbation technique 
can be found in the scattering of electromagnetic or 
acoustic waves from hard or soft objects, in the scatter­
ing of x ray or of light by interstellar matter, and in 
elementary particle scattering theory. 
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APPENDIX 

The definite integrals / u / ; J2inv, Jzinp, and J±in
v 

are denned as follows : 

Ji. 

J, 

dfi 
piP+V—PpWde, 

o dd Jo 

-FA'-' Jzmp = 

(MM n (ML p JL p JT n 

dd dd sin20 

dPn
l dPp1 

dO dd 

J C. Yeh, Phys. Rev. 131, 2350 (1963). 

f7" df\ dPn1 

Junp= pip+V—Pp'—^smSdO, 
Jo dd dd 

where / i=sin20 and dfi/dd=sin2d. 

(Al) 

sinOde, (A2) 

F\dd, (A3) 

(A4) 


